Innovative Options for Ex-Situ Removal of Perchlorate and Explosives in Groundwater

National Defense Industry Association
30th Environmental and Energy Symposium and Exhibition

April 7, 2004

Katherine Weeks (AMEC)
Scott Veenstra (AMEC)
David Hill
Innovative Technology Evaluation (ITE) Team

- Army National Guard
- Army Environmental Center
- Army Corps of Engineers
- AMEC Earth and Environmental

Acknowledgements

- Shaw Environmental & Infrastructure, Inc.
- US Filter Corporation
- Pennsylvania State University (PSU)
- The Purolite Company
- DL Maher (div. of Boart Longyear, Inc.)
ITE History and Mission

• History - Impact Area and Ranges at Site used for training since 1911

• Mission - Evaluate innovative remediation technologies to treat low levels of perchlorate and explosives in soil and groundwater
Ex Situ Groundwater Treatment Technology Evaluation

Technologies evaluated

- Fluidized Bed Bioreactor (FBBR)
- Granular Activated Carbon (Standard GAC)
- Granular Activated Carbon tailored by the addition of a proprietary cationic monomer (Tailored GAC)
- Ion Exchange Resin (IX Resin)
Site Contaminant and Aquifer Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Area #1</th>
<th>Area #2</th>
<th>Area #3</th>
<th>Area #4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perchlorate (µg/L)</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RDX & HMX (µg/L)</td>
<td>200</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Nitrate as N (mg/L)</td>
<td>2.2</td>
<td><0.12</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>Sulfate (mg/L)</td>
<td>4.6</td>
<td>6.1</td>
<td>4.4</td>
<td>5.0</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>7.6</td>
<td>7.9</td>
<td>7.2</td>
<td>8.7</td>
</tr>
<tr>
<td>Total Organic Carbon (mg/L)</td>
<td><1.0</td>
<td><1.0</td>
<td>0.59</td>
<td>0.68</td>
</tr>
<tr>
<td>Orthophosphate as P (mg/L)</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>Iron (mg/L)</td>
<td><0.5</td>
<td><0.5</td>
<td><0.5</td>
<td><0.5</td>
</tr>
<tr>
<td>pH (S.U.)</td>
<td>5.8</td>
<td>6.3</td>
<td>5.4</td>
<td>5.7</td>
</tr>
<tr>
<td>Dissolved Oxygen (mg/L)</td>
<td>9.8</td>
<td>9.4</td>
<td>10.6</td>
<td>9.2</td>
</tr>
</tbody>
</table>
Fluidized Bed Bioreactor Overview

- **FBBR experience**
 - In use at DoD and commercial sites - Longhorn AAP (TX), Aerojet (CA)
 - Vendor – Shaw Environmental & Infrastructure, Inc.
 - Prior demonstration at lab scale on TNT but not RDX

- **FBBR study**
 - Bed medium (GAC)
 - Biomass
 - Nutrient substrate
 - Nutrients (N, P)
 - pH control
 - Fluidization control

FBBR Flow Schematic
Credit: Shaw, Inc.
FBBR Area #1 Study Results

Initiation | Phase 1 - Acclimation | Phase 2 - HRT = 80 min. | Phase 3 - HRT = 35 min.

Concentration - ug/L

Date:
04/20/02 05/04/02 05/18/02 06/01/02 06/15/02 06/29/02 07/13/02 07/27/02 08/10/02

- CEIMIC Effluent Analyses
- Envirogen Effluent Analyses
- Envirogen Influent Analyses
- CEIMIC Influent Analyses
- Study Performance Goal

FBBR A (Acetic Acid) Effluent Perchlorate vs. Time

HRT = Hydraulic Retention Time
FBBR Area #2 Study Results

FBBR A (Acetic Acid) Effluent Perchlorate vs. Time

Phase 1. HRT = 16 min.

Phase 2. HRT = 11 min.

Perchlorate Concentration (ug/L)

Date

08/09/02 08/19/02 08/29/02 09/08/02 09/18/02 09/28/02

Envirogen Effluent Analyses

CEIMIC Effluent Analyses

Envirogen Influent Analyses

CEIMIC Influent Analyses

FBBR A (Acetic Acid) Effluent Perchlorate vs. Time
FBBR Study Conclusions

• Area #1 Study (Perchlorate and RDX)
 ° Perchlorate degraded to <1.0 µg/L at Hydraulic Retention Time (HRT) of 35 min.
 ° RDX degraded to <2 µg/L at HRT of 80 min.

• Area #2 Study (Perchlorate alone)
 ° Perchlorate degraded to <1.0 µg/L at HRT of 16 min.
 ° Addition of nitrate is required when perchlorate and other electron acceptors are low.
Granular Activated Carbon (Standard GAC)

- GAC - an old friend to water treatment, used on explosives
- Theory
 - Contaminants held onto carbon surface via adsorption
 - Contaminants removed but not destroyed
 - Initial Breakthrough - after carbon’s capacity is exhausted, levels in effluent are above detection limits
 - Rapid Small Scale Column Tests (RSSCTs) predict performance of a full-scale system
- Goal - Can Standard GAC remove perchlorate from groundwater at very low concentrations?
- Test - RSSCTs to find how much groundwater can be processed before breakthrough
 - Carbon provided by US Filter
 - Tests performed by PSU (Dr. Fred Cannon, Bob Parette)
Standard GAC RSSCTs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test #1</th>
<th>Test #2</th>
<th>Test #3</th>
<th>Test #4</th>
<th>Test #5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Study Area</td>
<td>#4</td>
<td>#1</td>
<td>#1</td>
<td>#1</td>
<td>#3</td>
</tr>
<tr>
<td>Perchlorate (µg/L)</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Influent RDX (µg/L)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.5</td>
</tr>
<tr>
<td>Influent HMX (µg/L)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>EBCT (min)</td>
<td>20</td>
<td>5</td>
<td>7</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>BV to Perchlorate BT</td>
<td>30,000</td>
<td>15,000</td>
<td>20,000</td>
<td>20,000</td>
<td>40,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to 25,000</td>
<td>to 24,000</td>
<td></td>
<td>to 46,000</td>
</tr>
<tr>
<td>BV to RDX BT</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>308,000</td>
</tr>
<tr>
<td>Effective Bed Life (mo)¹</td>
<td>13</td>
<td>2</td>
<td>3-4</td>
<td>9-11</td>
<td>9-10</td>
</tr>
</tbody>
</table>

EBCT = Empty Bed Contact Time
BV = Bed Volumes
BT = Breakthrough
¹ Effective Bed Life = time between media change-outs (months)
Modified Granular Activated Carbon (Tailored GAC)

- Theory - Increasing number of positive charges on GAC surface improves perchlorate adsorption
- Goal - Can modified GAC offer an economical alternative to conventional GAC?
- Test - Preload the GAC with organic monomer with a strong positive charge (Tailored GAC)
 - Tests performed by PSU (Dr. Fred Cannon, Bob Parette)
- Materials - Proprietary cationic monomer - NSF approval is pending
Tailored GAC RSSCTs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test #6</th>
<th>Test #7</th>
<th>Test #8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Study Area</td>
<td>#2</td>
<td>#3</td>
<td>#3</td>
</tr>
<tr>
<td>Perchlorate (µg/L)</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Influent explosives (µg/L)</td>
<td>0</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>EBCT (min)</td>
<td>5</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>BV to Perchlorate BT</td>
<td>77,000 to 170,000</td>
<td>270,000</td>
<td>270,000</td>
</tr>
<tr>
<td>BV to RDX BT</td>
<td>N/A</td>
<td>8,000</td>
<td>308,000</td>
</tr>
<tr>
<td>Effective Bed Life (mo)</td>
<td>9 - 19</td>
<td>56</td>
<td>56</td>
</tr>
</tbody>
</table>

EBCT = Empty Bed Contact Time
BV = Bed Volumes
BT = Breakthrough

1 Effective Bed Life = time between media change-outs (months)
2 Bed Life applies only to perchlorate treatment, not RDX treatment
3 Test #8 combines results from Tests #5 & #7 (2 columns: 1 Tailored GAC, followed by 1 Standard GAC)
RSSCT Results & Conclusions

• For 5 µg/L perchlorate in groundwater
 ° Standard GAC - operational life is 3 - 4 months (10-minute EBCT)
 ° Tailored GAC - operational life is ~ 20 months (5- minute EBCT)

• For 1 µg/L perchlorate and 6 µg/L explosives in groundwater
 ° Standard GAC - operational life is ~ 9 months (10-minute EBCT)
 ° Tailored GAC followed by Standard GAC - operational life is ~ 56 months (8.5-minute EBCT)

• Sorption differences
 ° Standard GAC very effective for explosives, slightly effective for perchlorate
 ° Tailored GAC very effective for perchlorate, ineffective for explosives
Ion Exchange Resins (IX Resins)

- **Theory** - Anions held to a +charged surface are exchanged for other anions. These IX resins do not remove explosives/other neutral species.

- **Test** - Field studies using Type I Styrenic Resins & Nitrate-Selective Resins.

- **Perchlorate Selective Resins** evaluated, but appear to have similar effective bed life to Nitrate-Selective Resins for treating perchlorate at the site, at higher expense.

- **Materials** - Purolite A520E, Purolite A600E are NSF approved for use in water supply.
Field Study - Tailored GAC, IX Resins

- Goal #1 - Is Tailored GAC effective at field scale?
- Goal #2 - How much will monomer leach from Tailored GAC?
- Goal #3 - Will a “polishing” GAC vessel capture leached monomer?
- Goal #4 - Can IX resins treat low concentrations of perchlorate?
Field Study - Tailored GAC, IX Resins

<table>
<thead>
<tr>
<th>Media</th>
<th>Tailored GAC</th>
<th>N – S Resin</th>
<th>T1 - S Resin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Study Area #2</td>
<td>#2</td>
<td>#2</td>
</tr>
<tr>
<td>Perchlorate (µg/L)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Explosives (µg/L)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EBCT (min)</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Bed Volumes to date</td>
<td>21,000</td>
<td>21,000</td>
<td>21,000</td>
</tr>
<tr>
<td>Predicted Bed Volumes</td>
<td>>150,000</td>
<td>72,000</td>
<td>15,000</td>
</tr>
<tr>
<td>Predicted Bed Life (mo)</td>
<td>> 16</td>
<td>> 8</td>
<td>> 1.5</td>
</tr>
</tbody>
</table>

N-S = Nitrate Selective ion exchange resin
T1-S = Type I Styrenic ion exchange resin
EBCT = Empty Bed Contact Time
BV = Bed Volumes
1 Predicted Bed Life = time between change-outs (months)
ITE Field Study Results & Conclusions

• Initial effluent from a Tailored GAC unit contains < 1 mg/L monomer; after one month < 0.1 mg/L.

• Preliminary: The Nitrate Selective Resin will likely remove perchlorate using an EBCT of 5 minutes, for an operation bed life of ~ 8 months.

• Preliminary: The Type I Styrenic Resin will likely remove perchlorate using an EBCT of 5 minutes, for an operation bed life of ~ 2 months.
Implementation Cost Comparison

<table>
<thead>
<tr>
<th>Treatment Scenario</th>
<th>Comparative Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 µg/L perchlorate</td>
<td></td>
</tr>
<tr>
<td>° Standard GAC</td>
<td>2x</td>
</tr>
<tr>
<td>° Tailored GAC</td>
<td>1.5X</td>
</tr>
<tr>
<td>° Nitrate Selective IX Resin</td>
<td>4x</td>
</tr>
<tr>
<td>1 µg/L perchlorate, 6 µg/L explosives</td>
<td></td>
</tr>
<tr>
<td>° Standard GAC</td>
<td>1X</td>
</tr>
<tr>
<td>° Tailored GAC¹</td>
<td>2X</td>
</tr>
<tr>
<td>° Nitrate Selective IX Resin</td>
<td>4X</td>
</tr>
</tbody>
</table>

Assumptions:
- Costs are for media only, except for Tailored GAC, where extra analytical costs are added. If monomer is NSF approved, costs are reduced by 0.5X
- Tailored GAC system requires extra Standard GAC vessel to treat explosives
ITE Study Recommendations

• Standard GAC can treat very low concentrations of perchlorate

• Standard GAC can be especially effective when explosives are present in addition to perchlorate

• Ion Exchange Resins can treat low concentrations of perchlorate to very low treatment goals.

• Tailored GAC may be an economical alternative to ion exchange resins. Further work to obtain NSF approval should be pursued.

• Applicability of ITE results to other sites is dependent on site characteristics -- RSSCTs, field studies recommended
References and Resources

- AMEC Earth & Environmental, Inc.
 - Katy Weeks – katherine.weeks@amec.com
 - Scott Veenstra – scott.veenstra@amec.com

- Shaw Environmental and Infrastructure, Inc.
 - Paul Togna - paul.togna@shawgrp.com
 - Bill Guarini - william.guarini@shawgrp.com

- Pennsylvania State University
 - Dr. Fred Cannon - fcannon@psu.edu
 - Bob Parette - rbp122@psu.edu

- US Filter
 - Dr. James Graham - GrahamJ@USFilter.com
 - Tim Peschman - PeschmanT@USFilter.com

- The Purolite Company
 - Tedd Begg - tbegg@puroliteUSA.com
 - Francis Boodoo - fboodoo@puroliteUSA.com