MONTHLY PROGRESS REPORT #342 FOR SEPTEMBER 2025

EPA REGION I ADMINISTRATIVE ORDERS SDWA 1-97-1019 and 1-2000-0014

JOINT BASE CAPE COD (JBCC) TRAINING RANGE AND IMPACT AREA

The following summary of progress is for the period from 01 to 30 September 2025.

1. SUMMARY OF REMEDIATION ACTIONS

Remediation Actions (RA) Underway at Camp Edwards as of 26 September 2025:

Demolition Area 1 Comprehensive Groundwater RA

The Demolition Area 1 Comprehensive Groundwater RA consists of the removal and treatment of contaminated groundwater to control further migration of explosives compounds and perchlorate. Extraction, treatment, and recharge (ETR) systems at Frank Perkins Road, Base Boundary, and the Leading Edge include extraction wells, an ex-situ treatment process to remove explosives compounds and perchlorate from the groundwater, and injection wells to return treated water to the aquifer.

The Frank Perkins Road Treatment Facility has been optimized as part of the Environmental and System Performance Monitoring (ESPM) program at Demolition Area 1. On 31 March 2025, the flow rate at the Frank Perkins Treatment Facility was reduced from 175 gallons per minute (gpm) to 100 gpm as a result of shutting down extraction well D1-EW-501, leaving only D1-EW-4 pumping as part of the Frank Perkins Road system. Due to a vault flood on 23 May 2025, which damaged electrical and pump equipment. EW-501 is currently operating at 100 gpm in place of EW-4. Diagnostics are ongoing. As of 26 September 2025, over 3.185 billion gallons of water were treated and re-injected.

The Base Boundary Mobile Treatment Unit (MTU) continues to operate at a flow rate of 65 gpm. As of 26 September 2025, over 446.2 million gallons of water were treated and re-injected. There were no Base Boundary MTU shutdowns in the reporting period.

The Leading-Edge System was turned off with regulatory approval on 19 August 2025 (formerly operated at a flow rate of 125 gpm). Over 469.4 million gallons of water were treated and reinjected since RA.

The Pew Road MTU was turned off with regulatory approval on 08 March 2021 (formerly operated at a flow rate of 65 gpm). Over 672.9 million gallons of water were treated and reinjected during the RA.

J-2 Range Groundwater RA

Northern

The J-2 Range Northern Treatment facility consists of removal and treatment of contaminated groundwater to control further migration of explosives compounds and perchlorate. The Extraction, Treatment, and Re-infiltration system includes three extraction wells, an ex-situ treatment process to remove explosives compounds and perchlorate from the groundwater, and an infiltration basin to return treated water to the aguifer.

The Northern MTUs E and F continue to operate at a flow rate of 250 gpm. As of 26 September 2025, over 2.373 billion gallons of water have been treated and re-injected. The following MTU E and F system shutdowns occurred in the reporting period:

- 1009 on 07 September 2025 Units E and F tripped due to a power interruption and were restarted at 1205 on 08 September 2025.
- 0656 on 25 September 2025 Unit E tripped and was restarted at 1035 on 25 September 2025.

The Northern Treatment Building G continues to operate at a flow rate of 225 gpm. As of 26 September 2025, over 1.827 billion gallons of water have been treated and re-injected. The following MTU G system shutdowns occurred in the reporting period:

- 0950 on 02 September 2025 due to a broken check valve. A new check valve was installed and the system was restarted at 0840 on 23 September 2025.
- 1850 on 23 September 2025 due to a power interruption and was restarted at 0919 on 24 September 2025.

Eastern

The J-2 Range Eastern Treatment system consists of removal and treatment of groundwater to minimize downgradient migration of explosives compounds and perchlorate. The ETI system includes the following components: three extraction wells in an axial array, an ex-situ treatment process consisting of an ion exchange (IX) resin and granular activated carbon (GAC) media to treat perchlorate and explosives compounds, and three infiltration trenches located along the lateral boundaries of the plume where treated water enters the vadose zone and infiltrates into the aquifer. The J-2 Range Eastern system is running at a combined total flow rate of 495 gpm.

The MTUs H and I continue to operate at a flow rate of 250 gpm. As of 26 September 2025, over 2.018 billion gallons of water have been treated and re-injected. The following MTU H and I system shutdowns occurred in the reporting period:

• 0813 on 24 September 2025 Units H and I tripped due to a power interruption and were restarted at 1143 on 24 September 2025.

MTU J continues to operate at a flow rate of 120 gpm. As of 26 September 2025, over 945.3 million gallons of water have been treated and re-injected. No MTU J shutdowns occurred in the reporting period:

MTU K continues to operate at a flow rate 125 gpm. As of 26 September 2025, over 1.080 billion gallons of water have been treated and re-injected. The following MTU K shutdowns occurred in the reporting period:

• 1950 on 24 September 2025 due to programming issues; the PLC has lost the program. The system will remain down until the PLC is reprogrammed.

J-3 Range Groundwater RA

The J-3 Range Groundwater RA consists of removal and treatment of contaminated groundwater to control further migration of explosives compounds and perchlorate. The ETR system includes four extraction wells, an ex-situ treatment process to remove explosives compounds and perchlorate from the groundwater and utilizes the existing Fuel Spill-12 (FS-12) infiltration gallery to return treated water to the aquifer.

The J-3 system is currently operating at a flow rate of 255 gpm. As of 26 September 2025, over 1.999 billion gallons of water have been treated and re-injected. The following J-3 system shutdowns occurred in the reporting period:

- 1310 on 03 September due to FS-12 being off and was restarted at 1356 on 10 September 2025.
- 0210 on 13 September 2025 due to FS-12 being off and was restarted at 0934 on 23 September 2025.
- 1800 on 23 September 2025 due to a power interruption and was restarted at 1140 on 24 September 2025.

J-1 Range Groundwater RA

Southern

The J-1 Range Southern Groundwater RA consists of removal and treatment of contaminated groundwater to control further migration of explosives compounds. The ETR system includes two extraction wells, an ex-situ treatment process to remove explosives compounds from the groundwater, and an infiltration trench to return treated water to the aquifer.

The Southern MTU has been optimized as part of the ESPM program at J-1 Range Southern. The on-base extraction well J1SEW0001 was turned off with regulatory approval on 28 February 2017 (formerly operated at a flow of 35 gpm), and flow was increased from 90 gpm to 125 gpm at the Leading-Edge extraction well J1SEW0002. The Leading-Edge extraction well continues to operate at a flow rate of 125 gpm. As of 26 September 2025, over 885.8million gallons of water have been treated and re-injected. No J-1 Range Southern MTU shutdowns occurred in the reporting period.

Northern

The J-1 Range Northern Groundwater RA consists of removal and treatment of contaminated groundwater to control further migration of explosives compounds and perchlorate. The ETR system includes two extraction wells, an ex-situ treatment process to remove explosives compounds and perchlorate from the groundwater, and an infiltration trench to return treated water to the aquifer.

The Northern MTU continues to operate at a total system flow rate of 250 gpm. The flow rates for the two extraction wells at J-1 Northern were modified on 28 October 2024 based on regulatory agency concurrence with the J-1 Range Northern Data Presentation for January 2023 to December 2023. The flow rate at J1NEW0001 was reduced from 125 gpm to 85 gpm and the flow rate at J1NEW0002 was increased from 125 gpm to 165 gpm. Due to an "Over Temp" alarm at EW0002 on 29 July 2025 J-1 North is currently running at 145 gpm, rather than 165 gpm and EW0001 running at 105 gpm, rather than 85 gpm.

As of 26 September 2025, over 1.531 billion gallons of water have been treated and re-injected. No J-1 Range Northern MTU shutdowns occurred in the reporting period.

Central Impact Area RA

The Central Impact Area (CIA) Groundwater treatment system consists of removal and treatment of groundwater to minimize downgradient migration of explosives compounds and

perchlorate. The ETR system includes the following components: three extraction wells, an exsitu treatment process consisting of an ion exchange resin and granular activated carbon media to treat explosives compounds, and three infiltration galleries to return treated water to the aquifer. The CIA systems 1, 2, and 3 continue to run at a combined total flow rate of 750 gpm. As of 26 September 2025, over 4.127 billion gallons of water have been treated and re-injected. No CIA system shutdowns occurred in the reporting period:

2. SUMMARY OF ACTIONS TAKEN

Operable Unit (OU) Activity as of 26 September 2025:

<u>CIA</u>

- Source Area Investigation
 - Conducted routine visual check of CSS cover and surface area around perimeter of the CSS.

Demolition Area 1

No activity

Demolition Area 2

No activity

J-1 Range

Groundwater sampling within the J-1 South SPM Program

J-2 Range

- Groundwater sampling within the J-2 Range North SPM Program
- Groundwater sampling within the J-2 Range North PFAS Program
- Completed PFAS well development at MW-742 and MW-743

J-3 Range

- Completed well reinstallation at MW-743 M1
- Completed well installation at MW-746
- Completed PFAS well development at MW-744, MW-745, MW-746 and MW-747

L Range

No activity

Small Arms Ranges

No activity

Northwest Corner

No activity

Training Areas

No activity

Impact Area Roads

No activity

Other

 Collected process water samples from Central Impact Area, Demolition Area 1, J-1 Range Northern, J-1 Range Southern, J-2 Range Eastern, J-2 Range Northern, and J-3 Range treatment systems.

JBCC Impact Area Groundwater Study Program (IAGWSP) Tech Update Meeting Minutes for 11 September 2025

Project and Fieldwork Update

Darrin Smith (USACE) provided the project and fieldwork update. He reported that groundwater sampling crews are performing the J-2 North (J-2 N) annual system performance monitoring (SPM) and the synoptic sampling event that began on 9/2/25. The J-2 North PFAS semi-annual sampling will be next, followed by the J-1 South annual SPM and synoptic sampling event.

Mr. Smith (USACE) stated that the September monthly treatment system process water sampling would be completed 9/11/25, with the exception of J-2 N System G. The August monthly treatment system sampling showed an exceedance of the action level (AL) at Demolition Area 1 (Demo 1) base boundary system for perchlorate. The AL is 0.35 μ g/L and there was a detection at 0.36 μ g/L in the effluent so an ion exchange changeout is being scheduled. There was also an exceedance of RDX AL at the Demo 1 Frank Perkins Road treatment system effluent at 0.30 μ g/L, exceeding the 0.25 μ g/L AL. The detection was unusual, so it was resampled with a quick turnaround. The preliminary results from the second sample show the detection at 0.20, which is lower than the AL.

Mr. Smith (USACE) noted that the J-2 N System G was turned off 9/2/25 due to a broken check valve. Installation of the new check valve is expected within the next week.

For notable system shutdowns, Mr. Smith (USACE) reported that thew J-3 system tripped on 9/3/25 due to FS-12 being down. FS-12 was restarted on 9/10/25, as was J-3. The Demo Leading Edge system was turned off on 8/19/25. Several decommissioning activities have been completed, including disconnecting electricity and the removal of the media vessels, extraction well (EW-5), and the pump. MW-659 was also decommissioned. The mobile treatment unit (MTU), infiltration gallery, and associated piping will be removed next. Site restoration work will be completed by the end of the month.

Mr. Smith (USACE) reported that monitoring well installation has been completed for the PFAS wells (two at J-2 N and the four at J-3). Well screens at MW-743M1 need to be reinstalled. Jessica Crispin (MADEP) asked if the PFAS wells were only installed at J-2 and Mr. Smith (USACE) replied that the wells were installed in the J-2 and J-3 areas. Ms. Cutler (IAGWSP)

stated that no additional wells are expected to be installed for PFAS and that investigation is nearing completion.

Mr. Dvorak (USACE) noted that the final 2025 Source Removal Report was submitted. Contractor bids are being reviewed for the next field season.

Document and Project Tracking

Jeff Dvorak (USACE) reviewed the tracking list for documents and upcoming presentations.

J-1 Range North Groundwater Monitoring Annual Report Presentation

Chris Kilbridge (USACE) provided the J-1 Range North (J-1 N) data presentation for the annual Environmental Monitoring Report (EMR). He noted that during the reporting period (January 2024 to December 2024), no new investigative work was performed.

Mr. Kilbridge (USACE) stated that the J-1 Range is one of the former contractor testing ranges and he displayed figures showing historical site views and pictures of the treatment systems. He noted there are two extraction treatment and reinjection (ETR) systems pumping at 85 gallons per minute (gpm) and 168 gpm respectively. During the reporting period, the treatment system was operating over 99% of the time. Since system startup, the system has been operational over 97% of the time, on average. There were no media breakthroughs or changeouts during the reporting period.

Mr. Kilbridge (USACE) reported that the blended influent concentrations ranged from 0.12-0.27 $\mu\text{g/L}$ for RDX and 0.57-0.8 $\mu\text{g/L}$ for perchlorate. HMX was not detected in the influent. Over 134 million gallons of groundwater were treated during the reporting period and over 1.4 billion gallons have been treated since system startup in 2013.

During the 2024 reporting period, 0.2 pounds of RDX and 0.73 pounds of perchlorate were removed. Since system startup, 1.25 pounds of RDX, 0.03 pounds of HMX, and 8.27 pounds of perchlorate have been removed. Mr. Kilbridge (USACE) showed trends graphs for RDX and perchlorate. Mass removal graphs were also shown and Mr. Kilbridge (USACE) pointed out that there is still incremental continuation of removal. Chemical monitoring graphs were also shown.

Mr. Kilbridge (USACE) reviewed the groundwater monitoring results for perchlorate with 62 well screens sampled (28 semi-annually). Concentrations ranged from non-detect (ND) to 9.7 μ g/L (MW-245M2). There were no screens greater than 15 μ g/L, which is the Lifetime Health Advisory (HA); 9 screens were greater than the 2.0 μ g/L Massachusetts Maximum Contaminant Level (MMCL). Most screens with detections greater than 2.0 μ g/L are less than 10 μ g/L; and six screens were less than 5 μ g/L. The Zone 1 maximum concentration was 9.7 μ g/L (MW-245M2). The Zone 2 maximum concentration was 2.8 μ g/L (MW-547M1). Both of these represent a slight decline from last year's maximum concentrations. A cross-sectional view was displayed.

Mr. Kilbridge (USACE) reviewed the groundwater monitoring results for RDX with 68 well screens sampled (ten wells semi-annually). Concentrations ranged from ND to 29.0 μ g/L (MW-245M2). There were eight screens greater than 0.6 μ g/L Risk-Based Concentration (RBC),7 screens greater than 0.97 μ g/L the Regional Screening Level (RSL); and five of those seven screens were greater than the 0.6 μ g/L RBC. Three screens were greater than the 2.0 μ g/L HA.

The Zone 1 maximum concentration was 29 μ g/L (MW-245M2). The Zone 2 maximum concentration was 0.17J μ g/L (MW-564M1). A cross-sectional view was shown. Mr. Kilbridge (USACE) noted that for Zone 1 (upgradient of EW-2), the mass perchlorate and RDX at depth is migrating toward, and predicted to be captured by, extraction well J1NEW0002 (EW-2). The maximum perchlorate detection was 9.7 μ g/L and the maximum RDX concentration was 29 μ g/L, and both were in the same well (MW-245M2). For Zone 2 (EW-2 to J1NEW0001 (EW-1)) at Wood Road), there is a declining trend at depth at MW-370M1, which accelerated after the redevelopment of EW-2 in July 2022. There is no perchlorate or RDX mass above the HA or MMCL.

Mr. Kilbridge (USACE) noted that the pumping rates were rebalanced during optimization in October 2024. At the leading-edge system on Wood Road, the pumping rates were reduced; the upgradient EW-2 system pumping rate was increased; the total system capacity remained the same. These revised pumping rates were for the last two months of the reporting period.

Mr. Kilbridge (USACE) displayed aquifer hydraulic figures with contour maps. He stated that synoptic sampling round was conducted in December 2024. Mr. Kilbridge (USACE) displayed figures showing model-predicted capture zones vs. the observed capture zones for perchlorate based on December 2024 conditions. The model-predicted maximum concentration was 20.3 μ g/L in Zone 2, upgradient of EW-2. The actual concentration was 9.7 μ g/L, which was the highest concentration detected during the reporting period. Downgradient, the model-predicted a continuous extent of perchlorate with a maximum concentration of 5.8 μ g/L. The actual data shows some mass slightly above 2 μ g/L but it is not a continuous extent.

The RDX results are similar. At the leading-edge system at Wood Road, the model did not predict any concentrations above 0.97 μ g/L. The maximum concentration was 0.35 μ g/L. Upgradient, the model-predicted capture zone had a maximum concentration of 14.5 μ g/L in the area. The actual maximum concentration was 29 μ g/L, upgradient of EW-2.

Mr. Kilbridge (USACE) stated that the predicted cleanup timeframes for perchlorate and RDX are mostly achieved by the dates in the 2011 Decision Document (DD). A table showed the DD timeframes and the revised timeframes based on current concentrations. For perchlorate, the DD estimated timeline for cleaning up perchlorate was 2035-2037. For RDX, the DD estimated timeline for cleanup was 2037-2045 with respect to the RBC of 0.6 μ g/L. If using the MassDEP GW-1 standard of 1.0 μ g/L, the cleanup timeframe is reduced to 2048. Based on the current optimized pumping rates, perchlorate is predicted to achieve cleanup by 2041 and RDX is predicted to achieve cleanup at 0.97 by 2048 in Zone 1. Mr. Kilbridge (USACE) noted that using the 0.97 cleanup goal, cleanup has been achieved in Zone 2. He added that there is a very limited mass that requires the later timeframe for cleanup levels to be achieved.

Mr. Kilbridge (USACE) summarized that most of the perchlorate mass is below 2 μ g/L and most of the RDX mass is less than 0.97 μ g/L. The ETR system has operated since January 2014, or about 46% of the anticipated time that was noted in the DD required for cleanup of perchlorate to less than 2 μ g/L and 32% of the anticipated time in the DD required for cleanup of RDX to less than 0.97 μ g/L. Figures showing the cleanup progress from 2010 to 2024 were displayed illustrating there are fewer higher detections of perchlorate and RDX over time.

Mr. Kilbridge (USACE) reviewed the recommendations for the site. A plume shell update is planned for 2027. There are no proposed changes to the Hydraulic Monitoring Program. The IAGWSP recommends no changes at the MTUs or to the pumping rates. Mr. Kilbridge (USACE)

restated that the October 2024 optimization of pumping rates decreased EW-1 to 85 gpm and increased EW-2 to 165 gpm for a total system rate of 250 gpm. This emphasized extraction in the Zone 1 area, upgradient of EW-2. Minimal mass remains in Zone 2. In June 2025, flows were revised at EW-1 to 105 gpm, and at EW-2 to 145 gpm with the total still at 250 gpm.

An optimized sampling network is proposed in the Draft 2024 EMR. The implementation of the new sampling frequency is pending EPA's review of the Response to Comments Letter (RCL), which was submitted 8/28/25. Further optimization, if needed, will be proposed in next EMR. Wells recommended for removal from sampling network are not abandoned but they are not sampled as part of the Five-Year Review.

Mr. Kilbridge (USACE) ended the presentation with a figure showing the progress of the perchlorate and RDX cleanup efforts at J-1 N. He showed the maximum concentrations in 2010 and noted that there were extensive subsurface investigations between 2010-2013 to support wellfield design of the remedy. He also showed depictions of the maximum concentrations in 2023, ten years later, which are considerably lower and fewer in number.

Ms. Crispin (MADEP) asked if the perchlorate plumelet depicted in Zone 2 was based on actual detections or predicted concentrations. Mr. Kilbridge (USACE) clarified that it is based on model predictions however, those predictions are rooted in historical data with predicted migrated data through 2021. He noted that it is expected to fully attenuate by dispersion. Ms. Crispin (MADEP) asked, if there were increasing trends at some of the wells, would additional wells need to be installed. Mr. Kilbridge (USACE) replied that there are other wells in the flow direction for J-1 N that could be sampled, if needed. Ms. Cutler (IAGWSP) noted that there are no downgradient receptors, the small plumelet has been delineated, and it is fully expected to attenuate before it hits the Cape Cod Canal. Mr. Kilbridge (USACE) agreed with those points and showed an aerial photograph of the canal, J-1 N, and the top of the mound for frame of reference. He reviewed the travel and transport for plumes from the southeast ranges. Ms. Cutler (IAGWSP) suggested that Ms. Crispin (MADEP) review the State of the Reservation Report and invited her to attend an upcoming tour.

Upcoming tech meeting: October 16, 2025

JBCC Cleanup Team Meeting

The next JBCC Cleanup Team (JBCCCT) meeting is tentatively scheduled for December 10, 2025. Meeting details and presentation materials from previous meetings can be found on the IAGWSP web site at http://jbcc-iagwsp.org/community/impact/presentations/. The Cleanup Team meeting discusses late breaking news and responses to action items, as well as updates from the IAGWSP and the Installation Restoration Program (IRP). The JBCCCT meetings provide a forum for community input regarding issues related to both the IRP and the IAGWSP.

3. SUMMARY OF DATA RECEIVED

Table 1 summarizes sampling for all media from 01 to 30 September 2025. Table 2 summarizes the validated detections of explosives compounds and perchlorate for all groundwater results received from 01 to 30 September 2025. These results are compared to the Maximum Contaminant Levels/Health Advisory (MCL/HA) values for respective analytes. Explosives and perchlorate are the primary contaminants of concern (COC) at Camp Edwards. Table 3 summarizes the validated detections of per- and polyfluoroalkyl substances (PFAS) for influent

and groundwater results analyzed by EPA draft Method 1633 and received from 01 to 30 September 2025. Table 3 PFAS results are compared to the Regional Screening Levels (RSLs) published by EPA in November 2023. No PFAS validation was completed during September 2025, therefore, Table 3 is not included.

The operable units (OUs) under investigation and cleanup at Camp Edwards are the Central Impact Area, Demolition Area 1, Demolition Area 2, J-1 Range, J-2 Range, J-3 Range, L Range, and Small Arms Ranges. Environmental monitoring reports for each OU are generated each year to evaluate the current year groundwater results. These reports are available on the site Environmental Data Management System (EDMS) and at the project document repository (IAGWSP office).

4. SUBMITTED DELIVERABLES

Deliverables submitted during the reporting period include the following:

 Final 2025 Source Removal Annual Report at the Central Impact Area 03 September 2025

 Draft Decision Document Addendum: Change in RDX Groundwater Cleanup Level for Impact Area Groundwater Study Program Operable Units Sitewide 12 September 2025

5. SCHEDULED ACTIONS

The following actions and/or documents are being prepared in October 2025.

- Final J-1 Range Northern EMR for January 2023 through December 2023
- Draft J-3 Range EMR for September 2023 through August 2024
- Draft L Range EMR for March 2024 through February 2025
- Draft J-1 Range South EMR for January 2024 through December 2024
- Draft Northwest Corner Demonstration of Compliance Report
- Final J-2 Range Eastern EMR for November 2023 through October 2024
- Final J-2 Range Northern EMR for November 2023 through October 2024
- Response to Comments on the IAGWSP Comprehensive PFAS Report
- Draft Decision Document Addendum: Change in RDX Groundwater Cleanup Level for Impact Area Groundwater Study Program Operable Units Sitewide Response to Comments

TABLE 1
Sampling Progress: 01 to 30 September 2025

Area Of Concern	Location	Field Sample ID	Sample Type	Date Sampled	Matrix	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)
J1 Range Southern	MW-398M2	MW-398M2_F25	N	09/29/2025	Ground Water	131.53	141.53
J1 Range Southern	MW-398M1	MW-398M1_F25	N	09/29/2025	Ground Water	172.15	182.15
J1 Range Southern	MW-360M2	MW-360M2_F25	N	09/29/2025	Ground Water	102.00	112.00
J1 Range Southern	MW-131S	MW-131S_F25	N	09/29/2025	Ground Water	96.00	106.00
J1 Range Southern	MW-722M2	MW-722M2_F25	N	09/25/2025	Ground Water	93.90	103.90
J1 Range Southern	MW-722M1	MW-722M1_F25	N	09/25/2025	Ground Water	114.20	124.20
J1 Range Southern	MW-722M1	MW-722M1_F25D	FD	09/25/2025	Ground Water	114.20	124.20
J2 Range Northern	J2EW0002	J2EW0002_FALL25	N	09/24/2025	Process Water	198.00	233.00
J2 Range Northern	MW-345M2	MW-345M2_FALL25	N	09/23/2025	Ground Water	236.62	246.62
J2 Range Northern	MW-345M1	MW-345M1_FALL25	N	09/23/2025	Ground Water	311.50	321.50
J2 Range Northern	MW-05D	MW-05D_FALL25	N	09/23/2025	Ground Water	335.00	340.00
J2 Range Northern	MW-293M1	MW-293M1_FALL25	N	09/23/2025	Ground Water	296.26	306.27
J2 Range Northern	MW-340D	MW-340D_FALL25	N	09/22/2025	Ground Water	329.60	339.60
J2 Range Northern	MW-337D	MW-337D_FALL25	N	09/22/2025	Ground Water	310.00	320.00
J2 Range Northern	MW-330M3	MW-330M3_FALL25	N	09/22/2025	Ground Water	154.97	164.99
J2 Range Northern	MW-330M2	MW-330M2_FALL25	N	09/22/2025	Ground Water	238.01	248.04
J2 Range Northern	MW-330M1	MW-330M1_FALL25	N	09/22/2025	Ground Water	313.10	323.13
J2 Range Northern	MW-330M1	MW-330M1_FALL25D	FD	09/22/2025	Ground Water	313.10	323.13
J2 Range Northern	MW-635M1	MW-635M1_F25	N	09/18/2025	Ground Water	265.40	275.40
J2 Range Northern	MW-621M1	MW-621M1_F25	N	09/18/2025	Ground Water	249.40	259.40
J2 Range Northern	MW-634M3	MW-634M3_F25	N	09/18/2025	Ground Water	170.60	180.60
J2 Range Northern	MW-322M1	MW-322M1_F25	N	09/17/2025	Ground Water	245.77	255.77
J2 Range Northern	MW-296M1	MW-296M1_F25	N	09/17/2025	Ground Water	255.08	265.08
J2 Range Northern	MW-327M2	MW-327M2_F25	N	09/17/2025	Ground Water	265.01	275.01
J2 Range Northern	MW-327M1	MW-327M1_F25	N	09/17/2025	Ground Water	296.06	306.04
J2 Range Northern	MW-588M2	MW-588M2_F25	N	09/16/2025	Ground Water	198.00	208.00
J2 Range Northern	MW-586M2	MW-586M2_F25	N	09/16/2025	Ground Water	211.00	221.00
J2 Range Northern	MW-585M3	MW-585M3_F25	N	09/16/2025	Ground Water	198.50	208.50
<u> </u>			<u> </u>				

TABLE 1
Sampling Progress: 01 to 30 September 2025

Area Of Concern	Location	Field Sample ID	Sample Type	Date Sampled	Matrix	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)
J2 Range Northern	MW-585M3	MW-585M3_F25D	FD	09/16/2025	Ground Water	198.50	208.50
J2 Range Northern	MW-585M2	MW-585M2_F25	N	09/16/2025	Ground Water	218.50	228.50
J2 Range Northern	MW-585M1	MW-585M1_F25	N	09/16/2025	Ground Water	240.00	250.00
J2 Range Northern	MW-337M1	MW-337M1_F25	N	09/15/2025	Ground Water	243.71	253.71
J2 Range Northern	MW-620M1	MW-620M1_F25	N	09/15/2025	Ground Water	268.60	278.60
J2 Range Northern	MW-640M2	MW-640M2_F25	N	09/15/2025	Ground Water	216.00	226.00
J2 Range Northern	MW-703M1	MW-703M1_F25	N	09/15/2025	Ground Water	248.00	258.00
J2 Range Northern	J2EW0002	J2EW0002_F25	N	09/15/2025	Process Water	198.00	233.00
J2 Range Northern	J2EW0001	J2EW0001_F25	N	09/15/2025	Process Water	179.00	234.00
J2 Range Northern	J2EW3-MW1-C	J2EW3-MW1-C_F25	N	09/11/2025	Ground Water	245.66	255.66
J2 Range Northern	MW-619M2	MW-619M2_F25	N	09/11/2025	Ground Water	234.10	244.10
J2 Range Northern	MW-619M1	MW-619M1_F25	N	09/11/2025	Ground Water	255.10	265.10
J3 Range	J3-EFF	J3-EFF-228A	N	09/11/2025	Process Water	0.00	0.00
J3 Range	J3-MID-2	J3-MID-2-228A	N	09/11/2025	Process Water	0.00	0.00
J3 Range	J3-MID-1	J3-MID-1-228A	N	09/11/2025	Process Water	0.00	0.00
J3 Range	J3-INF	J3-INF-228A	N	09/11/2025	Process Water	0.00	0.00
J2 Range Northern	J2EW2-MW2-C	J2EW2-MW2-C_F25	N	09/11/2025	Ground Water	243.83	253.81
J2 Range Northern	MW-632M2	MW-632M2_F25	N	09/10/2025	Ground Water	229.50	239.50
J2 Range Northern	MW-632M1	MW-632M1_F25	N	09/10/2025	Ground Water	254.50	264.50
J2 Range Northern	MW-318M1	MW-318M1_F25	N	09/10/2025	Ground Water	305.79	315.81
J2 Range Northern	MW-313M1	MW-313M1_F25	N	09/10/2025	Ground Water	255.42	265.42
J2 Range Northern	J2EW2-MW3-B	J2EW2-MW3-B_F25	N	09/09/2025	Ground Water	212.65	222.65
J2 Range Northern	MW-348M2	MW-348M2_F25	N	09/09/2025	Ground Water	206.54	216.54
J2 Range Northern	MW-621M2	MW-621M2_F25	N	09/09/2025	Ground Water	219.40	229.40
J2 Range Northern	MW-621M2	MW-621M2_F25D	FD	09/09/2025	Ground Water	219.40	229.40
J2 Range Northern	MW-702M2	MW-702M2_F25	N	09/09/2025	Ground Water	208.10	218.10
J2 Range Northern	MW-586M1	MW-586M1_F25	N	09/09/2025	Ground Water	237.00	247.00
J2 Range Northern	MW-587M2	MW-587M2_F25	N	09/08/2025	Ground Water	220.00	230.00
-			1	1	1	i i	1

TABLE 1
Sampling Progress: 01 to 30 September 2025

Area Of Concern	Location	Field Sample ID	Sample Type	Date Sampled	Matrix	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)
J2 Range Northern	MW-587M2	MW-587M2_F25D	FD	09/08/2025	Ground Water	220.00	230.00
J1 Range Southern	J1S-EFF	J1S-EFF-214A	N	09/08/2025	Process Water	0.00	0.00
J1 Range Southern	J1S-MID	J1S-MID-214A	N	09/08/2025	Process Water	0.00	0.00
J1 Range Southern	J1S-INF-2	J1S-INF-2-214A	N	09/08/2025	Process Water	0.00	0.00
J2 Range Northern	MW-587M1	MW-587M1_F25	N	09/08/2025	Ground Water	250.00	260.00
J2 Range Eastern	J2E-EFF-K	J2E-EFF-K-204A	N	09/08/2025	Process Water	0.00	0.00
J2 Range Eastern	J2E-MID-2K	J2E-MID-2K-204A	N	09/08/2025	Process Water	0.00	0.00
J2 Range Eastern	J2E-MID-1K	J2E-MID-1K-204A	N	09/08/2025	Process Water	0.00	0.00
J2 Range Eastern	J2E-INF-K	J2E-INF-K-204A	N	09/08/2025	Process Water	0.00	0.00
J2 Range Northern	J2EW1-MW1-C	J2EW1-MW1-C_F25	N	09/08/2025	Ground Water	240.80	250.80
J2 Range Eastern	J2E-EFF-J	J2E-EFF-J-204A	N	09/08/2025	Process Water	0.00	0.00
J2 Range Eastern	J2E-MID-2J	J2E-MID-2J-204A	N	09/08/2025	Process Water	0.00	0.00
J2 Range Eastern	J2E-MID-1J	J2E-MID-1J-204A	N	09/08/2025	Process Water	0.00	0.00
J2 Range Eastern	J2E-INF-J	J2E-INF-J-204A	N	09/08/2025	Process Water	0.00	0.00
J2 Range Northern	MW-589M2	MW-589M2_F25	N	09/08/2025	Ground Water	211.00	221.00
J2 Range Northern	MW-589M1	MW-589M1_F25	N	09/08/2025	Ground Water	240.00	250.00
J2 Range Eastern	J2E-MID-2H	J2E-MID-2H-204A	N	09/08/2025	Process Water	0.00	0.00
J2 Range Eastern	J2E-MID-1H	J2E-MID-1H-204A	N	09/08/2025	Process Water	0.00	0.00
J2 Range Eastern	J2E-EFF-IH	J2E-EFF-IH-204A	N	09/08/2025	Process Water	0.00	0.00
J2 Range Eastern	J2E-MID-2I	J2E-MID-2I-204A	N	09/08/2025	Process Water	0.00	0.00
J2 Range Eastern	J2E-MID-1I	J2E-MID-1I-204A	N	09/08/2025	Process Water	0.00	0.00
J2 Range Eastern	J2E-INF-I	J2E-INF-I-204A	N	09/08/2025	Process Water	0.00	0.00
J2 Range Northern	MW-585M3	MW-585M3_F25	N	09/04/2025	Ground Water	198.50	208.50
J2 Range Northern	MW-585M3	MW-585M3_F25D	FD	09/04/2025	Ground Water	198.50	208.50
J2 Range Northern	MW-230M1	MW-230M1_F25	N	09/04/2025	Ground Water	130.00	140.00
Central Impact Area	CIA2-EFF	CIA2-EFF-140A	N	09/04/2025	Process Water	0.00	0.00
Central Impact Area	CIA2-MID2	CIA2-MID2-140A	N	09/04/2025	Process Water	0.00	0.00
Central Impact Area	CIA2-MID1	CIA2-MID1-140A	N	09/04/2025	Process Water	0.00	0.00

TABLE 1
Sampling Progress: 01 to 30 September 2025

Area Of Concern	Location	Field Sample ID	Sample Type	Date Sampled	Matrix	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)	
Central Impact Area	CIA2-INF	CIA2-INF-140A	N	09/04/2025	Process Water	0.00	0.00	
Central Impact Area	CIA1-EFF	CIA1-EFF-140A	N	09/04/2025	Process Water	0.00	0.00	
Central Impact Area	CIA1-MID2	CIA1-MID2-140A	N	09/04/2025	Process Water	0.00	0.00	
J2 Range Northern	MW-234M2	MW-234M2_F25	N	09/04/2025	Ground Water	110.00	120.00	
Central Impact Area	CIA1-MID1	CIA1-MID1-140A	N	09/04/2025	Process Water	0.00	0.00	
Central Impact Area	CIA1-INF	CIA1-INF-140A	N	09/04/2025	Process Water	0.00	0.00	
J2 Range Northern	MW-234M1	MW-234M1_F25	MS	09/04/2025	Ground Water	130.00	140.00	
J2 Range Northern	MW-234M1	MW-234M1_F25	N	09/04/2025	Ground Water	130.00	140.00	
J2 Range Northern	MW-234M1	MW-234M1_F25	SD	09/04/2025	Ground Water	130.00	140.00	
Central Impact Area	CIA3-EFF	CIA3-EFF-111A	N	09/04/2025	Process Water	0.00	0.00	
Central Impact Area	CIA3-MID2	CIA3-MID2-111A	N	09/04/2025	Process Water	0.00	0.00	
Central Impact Area	CIA3-MID1	CIA3-MID1-111A	N	09/04/2025	Process Water	0.00	0.00	
Central Impact Area	CIA3-INF	CIA3-INF-111A	N	09/04/2025	Process Water	0.00	0.00	
J2 Range Northern	MW-634M2	MW-634M2_F25	MS	09/03/2025	Ground Water	200.60	210.60	
J2 Range Northern	MW-634M2	MW-634M2_F25	N	09/03/2025	Ground Water	200.60	210.60	
J2 Range Northern	MW-634M2	MW-634M2_F25	SD	09/03/2025	Ground Water	200.60	210.60	
J2 Range Northern	MW-634M1	MW-634M1_F25	N	09/03/2025	Ground Water	305.60	315.60	
J1 Range Northern	J1N-EFF	J1N-EFF-143A	N	09/03/2025	Process Water	0.00	0.00	
J1 Range Northern	J1N-MID2	J1N-MID2-143A	N	09/03/2025	Process Water	0.00	0.00	
J1 Range Northern	J1N-MID1	J1N-MID1-143A	N	09/03/2025	Process Water	0.00	0.00	
J2 Range Northern	MW-289S	MW-289S_F25	N	09/03/2025	Ground Water	105.00	115.00	
J1 Range Northern	J1N-INF2	J1N-INF2-143A	N	09/03/2025	Process Water	0.00	0.00	
J2 Range Northern	MW-289M2	MW-289M2_F25	N	09/03/2025	Ground Water	162.00	172.00	
J2 Range Northern	J2N-MID-2F	J2N-MID-2F-228A	N	09/03/2025	Process Water	0.00	0.00	
J2 Range Northern	J2N-MID-1F	J2N-MID-1F-228A	N	09/03/2025	Process Water	0.00	0.00	
J2 Range Northern	J2N-EFF-EF	J2N-EFF-EF-228A	N	09/03/2025	Process Water	0.00	0.00	
J2 Range Northern	J2N-MID-2E	J2N-MID-2E-228A	N	09/03/2025	Process Water	0.00	0.00	
J2 Range Northern	J2N-MID-1E	J2N-MID-1E-228A	N	09/03/2025	Process Water	0.00	0.00	

TABLE 1
Sampling Progress: 01 to 30 September 2025

A 01 0	Landan	Field County ID	0	Data Gamerlad	Madala	Top of Screen (ft	Bottom of Screen (ft
Area Of Concern	Location	Field Sample ID	Sample Type	Date Sampled	Matrix	bgs)	bgs)
J2 Range Northern	J2N-INF-EF	J2N-INF-EF-228A	N	09/03/2025	Process Water	0.00	0.00
J2 Range Northern	MW-289M1	MW-289M1_F25	N	09/03/2025	Ground Water	305.00	315.00
J2 Range Northern	MW-640M1	MW-640M1_F25	N	09/02/2025	Ground Water	246.00	256.00
Demolition Area 1	FPR-2-EFF-A	FPR-2-EFF-A-234A	N	09/02/2025	Process Water	0.00	0.00
Demolition Area 1	FPR-2-GAC-MID2A	FPR-2-GAC-MID2A-234A	N	09/02/2025	Process Water	0.00	0.00
Demolition Area 1	FPR-2-GAC-MID1A	FPR-2-GAC-MID1A-234A	N	09/02/2025	Process Water	0.00	0.00
Demolition Area 1	FPR-2-INF	FPR-2-INF-234A	N	09/02/2025	Process Water	0.00	0.00
Demolition Area 1	D1-EFF	D1-EFF-182A	N	09/02/2025	Process Water	0.00	0.00
J2 Range Northern	MW-703M2	MW-703M2_F25	N	09/02/2025	Ground Water	224.10	234.10
J2 Range Northern	MW-703M2	MW-703M2_F25D	FD	09/02/2025	Ground Water	224.10	234.10
Demolition Area 1	D1-MID-2	D1-MID-2-182A	N	09/02/2025	Process Water	0.00	0.00
Demolition Area 1	D1-MID-1	D1-MID-1-182A	N	09/02/2025	Process Water	0.00	0.00
Demolition Area 1	D1-INF	D1-INF-182A	N	09/02/2025	Process Water	0.00	0.00
J2 Range Northern	MW-622M2	MW-622M2_F25	N	09/02/2025	Ground Water	220.40	230.40
J2 Range Northern	MW-622M1	MW-622M1_F25	N	09/02/2025	Ground Water	245.40	255.40
J2 Range Northern	MW-704M2	MW-704M2_F25	N	09/02/2025	Ground Water	217.80	227.80

TABLE 2 VALIDATED EXPLOSIVE AND PERCHLORATE RESULTS Data Received 01 to 30 September 2025

Data Received 01 to 30 September 2025														
Area of Concern	Location ID	Field Sample ID	Top Depth (ft bgs)	Bottom Depth (ft bgs)	Date Sampled	Test Method	Analyte	Result Value	Qualifier	Units	MCL/HA	> MCL/HA	MDL	RL
J2 Range Eastern	MW-366M1	MW-366M1_F25	215.00	225.00	08/12/2025	SW6850	Perchlorate	1.3		μg/L	2.0		0.019	0.20
J2 Range Eastern	MW-339M1	MW-339M1_F25	233.00	243.00	08/12/2025	SW6850	Perchlorate	0.45		μg/L	2.0		0.019	0.20
J2 Range Eastern	MW-436M1	MW-436M1_F25	295.47	305.47	08/12/2025	SW6850	Perchlorate	0.24		μg/L	2.0		0.019	0.20
J2 Range Eastern	J2MW-01M2	J2MW-01M2_F25	245.00	255.00	08/11/2025	SW6850	Perchlorate	0.40		μg/L	2.0		0.019	0.20
J2 Range Eastern	J2MW-02M1	J2MW-02M1_F25	271.00	281.00	08/11/2025	SW6850	Perchlorate	2.4		μg/L	2.0	х	0.019	0.20
J2 Range Eastern	MW-324M2	MW-324M2_F25	203.74	214.74	08/11/2025	SW6850	Perchlorate	0.62		μg/L	2.0		0.019	0.20
J2 Range Eastern	MW-324M2	MW-324M2_F25	203.74	214.74	08/11/2025	SW8330	Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	0.085	J	μg/L	400		0.028	0.20
J2 Range Eastern	MW-324M1	MW-324M1_F25	234.85	244.85	08/11/2025	SW6850	Perchlorate	0.18	J	μg/L	2.0		0.019	0.20
J2 Range Eastern	MW-666M1	MW-666M1_F25	244.80	254.80	08/07/2025	SW6850	Perchlorate	0.14	J	μg/L	2.0		0.019	0.20
J2 Range Eastern	MW-667M2	MW-667M2_F25	277.30	287.30	08/07/2025	SW6850	Perchlorate	0.26		μg/L	2.0		0.019	0.20
J2 Range Eastern	MW-667M2	MW-667M2_F25	277.30	287.30	08/07/2025	SW8330	Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	0.29		μg/L	0.60		0.066	0.20
J2 Range Eastern	MW-667M2	MW-667M2_F25	277.30	287.30	08/07/2025	SW8330	Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	0.43		μg/L	400		0.028	0.20
J2 Range Eastern	MW-667M1	MW-667M1_F25	302.30	312.30	08/07/2025	SW6850	Perchlorate	0.39		μg/L	2.0		0.019	0.20
J2 Range Eastern	MW-667M1	MW-667M1_F25	302.30	312.30	08/07/2025	SW8330	Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	0.87		μg/L	0.60	x	0.066	0.20
J2 Range Eastern	MW-667M1	MW-667M1_F25	302.30	312.30	08/07/2025	SW8330	Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	0.76		μg/L	400		0.028	0.20
J2 Range Eastern	MW-705M2	MW-705M2_F25	185.90	195.90	08/05/2025	SW6850	Perchlorate	1.5		μg/L	2.0		0.019	0.20
J2 Range Eastern	MW-215M2	MW-215M2_F25	205.00	215.00	08/05/2025	SW6850	Perchlorate	1.1		μg/L	2.0		0.019	0.20
J2 Range Eastern	MW-215M2	MW-215M2_F25	205.00	215.00	08/05/2025	SW8330	Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	0.35	J	μg/L	0.60		0.066	0.20
J2 Range Eastern	MW-215M2	MW-215M2_F25	205.00	215.00	08/05/2025	SW8330	Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	0.099	J	μg/L	400		0.028	0.20
J2 Range Eastern	MW-215M1	MW-215M1_F25	240.00	250.00	08/05/2025	SW6850	Perchlorate	2.5		μg/L	2.0	Х	0.019	0.20
J2 Range Eastern	MW-307M3	MW-307M3_F25	125.80	135.82	08/04/2025	SW6850	Perchlorate	0.19	J	μg/L	2.0		0.019	0.20
J2 Range Eastern	MW-707S	MW-707S_F25	110.30	120.30	08/04/2025	SW6850	Perchlorate	0.12	J	μg/L	2.0		0.019	0.20
J2 Range Eastern	MW-707S	MW-707S_F25	110.30	120.30	08/04/2025	SW8330	Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	0.21		μg/L	400		0.028	0.20
J2 Range Eastern	MW-321M2	MW-321M2_F25	155.67	165.67	08/04/2025	SW6850	Perchlorate	0.16	J	μg/L	2.0		0.019	0.20
J2 Range Eastern	MW-321M1	MW-321M1_F25	174.61	184.61	08/04/2025	SW6850	Perchlorate	0.064	J	μg/L	2.0		0.019	0.20
J2 Range Eastern	MW-368M3	MW-368M3_F25	155.50	165.50	07/31/2025	SW6850	Perchlorate	0.031	J	μg/L	2.0		0.019	0.20
J2 Range Eastern	MW-368M2	MW-368M2_F25	202.73	212.73	07/31/2025	SW6850	Perchlorate	1.2		μg/L	2.0		0.019	0.20
J2 Range Eastern	MW-368M2	MW-368M2_F25	202.73	212.73	07/31/2025	SW8330	Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	0.56		μg/L	0.60		0.066	0.20

J = Estimated Result MDL = Method Detection Limit RL = Reporting Limit ND = Non-Detect

MCL/HA= Either the MCL or Lowest Health Advisory Limit

TABLE 2 VALIDATED EXPLOSIVE AND PERCHLORATE RESULTS Data Received 01 to 30 September 2025

				_			o September 2025							
Area of Concern	Location ID	Field Sample ID	Top Depth (ft bgs)	Bottom Depth (ft bgs)	Date Sampled	Test Method	Analyte	Result Value	Qualifier	Units	MCL/HA	> MCL/HA	MDL	RL
J2 Range Eastern	MW-368M2	MW-368M2_F25	202.73	212.73	07/31/2025	SW8330	Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	3.6		μg/L	400		0.028	0.20
J2 Range Eastern	MW-368M1	MW-368M1_F25	237.35	247.35	07/31/2025	SW6850	Perchlorate	19.0		μg/L	2.0	Х	0.095	1.0
J2 Range Eastern	MW-368M1	MW-368M1_F25	237.35	247.35	07/31/2025	SW8330	Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	4.0		μg/L	0.60	Х	0.066	0.20
J2 Range Eastern	MW-368M1	MW-368M1_F25D	237.35	247.35	07/31/2025	SW6850	Perchlorate	19.0		μg/L	2.0	Х	0.095	1.0
J2 Range Eastern	MW-368M1	MW-368M1_F25D	237.35	247.35	07/31/2025	SW8330	Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	3.9		μg/L	0.60	Х	0.066	0.20
J2 Range Eastern	MW-668M1	MW-668M1_F25	168.70	178.70	07/29/2025	SW6850	Perchlorate	1.7		μg/L	2.0		0.019	0.20
J2 Range Eastern	MW-668M1	MW-668M1_F25D	168.70	178.70	07/29/2025	SW6850	Perchlorate	1.8		μg/L	2.0		0.019	0.20
J2 Range Eastern	MW-665M3	MW-665M3_F25	175.20	185.20	07/29/2025	SW6850	Perchlorate	0.14	J	μg/L	2.0		0.019	0.20
J2 Range Eastern	MW-665M2	MW-665M2_F25	205.20	215.20	07/29/2025	SW6850	Perchlorate	2.4		μg/L	2.0	х	0.019	0.20
J2 Range Eastern	MW-665M2	MW-665M2_F25	205.20	215.20	07/29/2025	SW8330	Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	2.1		μg/L	0.60	х	0.066	0.20
J2 Range Eastern	MW-665M2	MW-665M2_F25	205.20	215.20	07/29/2025	SW8330	Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	0.19	J	μg/L	400		0.028	0.20
J2 Range Eastern	MW-665M2	MW-665M2_F25D	205.20	215.20	07/29/2025	SW6850	Perchlorate	2.4		μg/L	2.0	х	0.019	0.20
J2 Range Eastern	MW-665M2	MW-665M2_F25D	205.20	215.20	07/29/2025	SW8330	Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	2.2		μg/L	0.60	х	0.066	0.20
J2 Range Eastern	MW-665M2	MW-665M2_F25D	205.20	215.20	07/29/2025	SW8330	Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	0.19	J	μg/L	400		0.028	0.20
J3 Range	MW-576M2	MW-576M2_F25	133.90	143.90	07/17/2025	SW6850	Perchlorate	0.070	J	μg/L	2.0		0.019	0.20
J3 Range	MW-576M1	MW-576M1_F25	173.90	183.90	07/17/2025	SW6850	Perchlorate	0.056	J	μg/L	2.0		0.019	0.20
J3 Range	MW-193S	MW-193S_F25	32.50	37.50	07/17/2025	SW6850	Perchlorate	0.11	J	μg/L	2.0		0.019	0.20
J3 Range	MW-193S	MW-193S_F25	32.50	37.50	07/17/2025	SW8330	Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	0.61		μg/L	0.60	х	0.092	0.20
J3 Range	MW-653M2	MW-653M2_F25	59.30	69.30	07/16/2025	SW6850	Perchlorate	0.035	J	μg/L	2.0		0.019	0.20
J3 Range	MW-653M1	MW-653M1_F25	147.50	157.50	07/16/2025	SW6850	Perchlorate	0.12	J	μg/L	2.0		0.019	0.20
J3 Range	MW-197M3	MW-197M3_F25	60.20	65.20	07/16/2025	SW6850	Perchlorate	0.071	J	μg/L	2.0		0.019	0.20
J3 Range	MW-197M3	MW-197M3_F25	60.20	65.20	07/16/2025	SW8330	Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	0.69		μg/L	400		0.13	0.20
J3 Range	MW-197M2	MW-197M2_F25	80.20	85.20	07/16/2025	SW6850	Perchlorate	0.046	J	μg/L	2.0		0.019	0.20
J3 Range	MW-247M2	MW-247M2_F25	125.00	135.00	07/10/2025	SW6850	Perchlorate	0.33		μg/L	2.0		0.019	0.20
J3 Range	MW-227M2	MW-227M2_F25	110.00	120.00	07/08/2025	SW8330	Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	0.34		μg/L	0.60		0.092	0.20
J3 Range	MW-329M2	MW-329M2_F25	150.05	160.05	07/08/2025	SW6850	Perchlorate	1.7		μg/L	2.0		0.019	0.20
J3 Range	MW-329M1	MW-329M1_F25	179.96	189.96	07/08/2025	SW6850	Perchlorate	0.46		μg/L	2.0		0.019	0.20
J3 Range	90MW0054	90MW0054_F25	107.00	112.00	07/07/2025	SW8330	Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	1.7	J	μg/L	0.60	Х	0.092	0.20

J = Estimated Result MDL = Method Detection Limit RL = Reporting Limit ND = Non-Detect MCL/HA= Either the MCL or Lowest Health Advisory Limit

TABLE 2 VALIDATED EXPLOSIVE AND PERCHLORATE RESULTS Data Received 01 to 30 September 2025

	Data received of to 50 depterment 2020													
Area of Concern	Location ID	Field Sample ID	Top Depth	Bottom Depth	Date Sampled	Test Method	Analyte	Result Value	Qualifier	Units	MCL/HA	> MCL/HA	MDL	RL
J3 Range	90MW0054	90MW0054_F25	107.00	112.00	07/07/2025	SW8330	Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	1.3		μg/L	400		0.13	0.20
J3 Range	90MW0054	90MW0054_F25D	107.00	112.00	07/07/2025	SW8330	Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	1.1	J	μg/L	0.60	Х	0.092	0.20
J3 Range	90MW0054	90MW0054_F25D	107.00	112.00	07/07/2025	SW8330	Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	1.7		μg/L	400		0.13	0.20
J3 Range	MW-163S	MW-163S_F25	38.00	48.00	07/01/2025	SW6850	Perchlorate	4.4		μg/L	2.0	х	0.019	0.20
J3 Range	MW-163S	MW-163S_F25	38.00	48.00	07/01/2025	SW8330	Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	0.69		μg/L	0.60	х	0.092	0.20
J3 Range	MW-163S	MW-163S_F25D	38.00	48.00	07/01/2025	SW6850	Perchlorate	4.2		μg/L	2.0	Х	0.019	0.20
J3 Range	MW-163S	MW-163S_F25D	38.00	48.00	07/01/2025	SW8330	Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	0.75		μg/L	0.60	Х	0.092	0.20
J3 Range	MW-232M2	MW-232M2_F25	61.00	66.00	07/01/2025	SW6850	Perchlorate	0.19	J	μg/L	2.0		0.019	0.20
J3 Range	MW-232M1	MW-232M1_F25	77.50	82.50	07/01/2025	SW6850	Perchlorate	0.098	J	μg/L	2.0		0.019	0.20
J3 Range	MW-232M1	MW-232M1_F25D	77.50	82.50	07/01/2025	SW6850	Perchlorate	0.084	J	μg/L	2.0		0.019	0.20
J3 Range	MW-637M2	MW-637M2_F25	214.10	224.10	06/30/2025	SW6850	Perchlorate	1.4		μg/L	2.0		0.019	0.20
J3 Range	MW-637M2	MW-637M2_F25	214.10	224.10	06/30/2025	SW8330	Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	0.71		μg/L	0.60	Х	0.092	0.20
J3 Range	J3-MW-1-B	J3-MW-1-B_F25	175.61	185.61	06/30/2025	SW6850	Perchlorate	0.40		μg/L	2.0		0.019	0.20
J3 Range	MW-343M1	MW-343M1_F25	214.80	224.80	06/30/2025	SW6850	Perchlorate	0.11	J	μg/L	2.0		0.019	0.20
J3 Range	MW-198M4	MW-198M4_F25	70.00	75.00	06/26/2025	SW6850	Perchlorate	0.32		μg/L	2.0		0.019	0.20
J3 Range	MW-198M4	MW-198M4_F25	70.00	75.00	06/26/2025	SW8330	Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	0.17	J	μg/L	0.60		0.092	0.20
J3 Range	MW-198M3	MW-198M3_F25	100.00	105.00	06/26/2025	SW6850	Perchlorate	0.21		μg/L	2.0		0.019	0.20
J3 Range	MW-198M2	MW-198M2_F25	120.00	125.00	06/26/2025	SW6850	Perchlorate	0.56		μg/L	2.0		0.019	0.20